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An optimum frame sync algorithm for biorthogonally coded telemetry is de-
scribed. This algorithm takes the coding into account and therefore performs
significantly better than algorithms derived for uncoded telemetry, for only a slight

increase in implementation complexity.

I. Introduction

As part of the overall task of guaranteeing a given level
of telemetry link performance to NASA planetary proj-
ects, the problem of acquiring frame synchronization for
biorthogonally coded data was investigated. The results
of this study can also be applied to the Network Control
System (NCS), where master telemetry frames must be
stripped to obtain key spacecraft engineering measure-
ments for retransmission to the DSIF stations, and to the
Mission Control and Computing Center (MCCC).

In past planetary missions, frame synchronization has
been achieved by detecting the periodic peaks of the
cross correlation between the known binary frame sync
sequence and the decoded bit stream. Because this cross
correlation is based on the binary Hamming distance
metric, the probability of false sync acquisition is mini-
mized by selecting binary frame sync sequences with
highly peaked autocorrelation functions, such as Barker
and pseudonoise (PN) sequences.
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This approach to the problem of frame sync acquisition
is optimum for uncoded telemetry, where successive bit
errors in the received bit stream are statistically inde-
pendent. However, it is not optimum for coded telemetry
because it does not take account of the existence of mul-
tiple bit error patterns in the decoded data as a result of
statistically independent word errors. Despite this incon-
gruency, frame sync acquisition algorithms based on the
Hamming distance metric have continued to be used on
Mariner missions with telemetry modes employing a (32,6)
biorthogonal code.

To alleviate this situation, a frame sync procedure
based on a word distance metric is proposed. It is argued
heuristically below that this approach is optimum for
biorthogonally coded data with regard to minimizing the
probability of false sync acquisition. For this design cri-
terion, the superiority of the word distance metric over
the Hamming distance metric is demonstrated analyti-
cally. Although the frame sync problem is discussed below
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in the specific context of the Mariner (32,6) biorthogonal
code, the results can readily be extended to include any
biorthogonal or orthogonal code.

I1. Discussion

The problem of acquiring frame synchronization for
binary phase-shift-keyed (PSK) telemetry modes employ-
ing a (32,6) biorthogonal code is examined below. The
scope of the discussion is limited to the special case in
which each frame contains N complete 6-bit words, in-
cluding a frame sync prefix of K complete words. (The
general case wherein the frame sync sequence and the
frame itself do not contain integral numbers of words
results in a more complicated optimum frame sync acqui-
sition algorithm.) 1t is implicitly assumed below that word
synchronization is correctly established prior to the appli-
cation of the frame sync acquisition algorithm, so that only
1% of the decoded data bits need be considered as possible
starting locations for the received frame sync sequences.

Suppose frame synchronization is to be acquired by
processing an arbitrary, contiguous span of N decoded
words in order to locate the received sync sequence con-
tained therein. If the frame sync decision is actually to
be based on n such spans, the problem reduces to the
above for a frame length of nN words and a sync se-
quence composed of nK noncontiguous words. The frame
sync sequence will be denoted by the binary 6K-tuple
s = (80,81, * * * ,Sg-1), where each s; is a word. The span
of N decoded words used to determine frame synchro-
nization will be represented by the binary sequence
r=(r,, Iy, - * * ,Try.), where each r; is a decoded word.

Define the mth K-word decoded segment

Pm = (l'm> Yme1, © " ° ,rm+K—1)

where the subscripts are modulo N, and 0=m=N — 1.
The objective is to determine which of the N segments p,,
is the most likely received frame sync sequence. In order
to compare each p,, with the frame sync sequence s, the
binary error sequence

[ (eo,m, €1,m * " ,eK—l,m)

is formed, wherein the ith error word e;, », is the bit-by-bit
modulo 2 sum of s; and r,,;. An appropriate frame sync
metric to operate on each error sequence e,, must now be
devised. To this end, the probability distribution of eu*
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will now be examined, where p,* is the actual received
frame sync sequence.

When a binary PSK signal is demodulated using a
carrier reference derived from the modulated signal, there
is a binary phase ambiguity in the detector output: that is,
the output of the block decoder can be data or inverted
data (data) with equal probability. Therefore, in the ab-
sence of any errors in p,,* due to noise, e,» will contain all
O’s or all I’s with probability 1/2. This phase ambiguity is
resolved when frame sync is established, according to
whether p,,» resembles s or’s. For the (32,6) biorthogonal
code, conditioned on data or data at the decoder output,
the e; s are statistically independent random binary
6-tuples with probability distributions

1— e €i,m* — 0

’. N —
Pr[e; n*|data] = ¢ eumr =1 (1)

Gl?: (ew — e'); € m£0,1
1-— Ew; €, m* — 1
e; eimx=0 (2)

615 (o — ) €smeg20,1

Pr [e,-,m*|5a—t§] =

where 0 is the 6-tuple containing all 0’s, and 1 is similarly
defined. In Egs. (1) and (2), e» is the probability that a
transmitted 6-bit word is incorrectly decoded, and, in par-
ticular, ¢ is the probability that it is decoded to its com-
plement, conditioned on the detection of data. Typically,
¢’ is sufficiently small that it can be neglected; for example,
when e, ~ 0.5, ¢'/ey ~ 1075, and ¢’/¢,, decreases mono-
tonically as &, decreases. The assumption that ¢” is in fact
negligible is made in the work that follows.

Because &, is generally small, it is evident from Eq. (1)
that, when the detector output is data, the probability that
e; m* is 0 is much greater than the probability that e; .+ is
a particular mixed pattern of 0’s and 1’s. A similar state-
ment can be made for the case where the detector output
is data.

Therefore, conditioned on the detection of data, most
of the error words in e,* can be expected to be 0’s, with a
small number of mixed error patterns; for the case of data,
most of the error words will be 1’s, with some mixed pat-
terns. Under the earlier assumption that ¢ is negligible,
e+ cannot contain both 0’s and Is.
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As shown in Egs. (1) and (2), e; »* has an equal proba-
bility of being any of the 62 mixed patterns of 0’s and I’s.
As a particular example,

Pr [e:,m* = 000100] = Pr [e; ,+ = 011111] = %

@)
whether the detector output is data or data. Conditioned
on the detection of data, a frame sync acquisition algo-
rithm based on the Hamming distance metric will be
more likely to select p,+ as the received frame sync se-
quence if a particular sync word error e; ,* is 000100 than
if it is 011111. However, this is clearly not optimal since
these two sync word error patterns are equally likely.

Because sync word errors_are statistically indepen-
dent, conditioned on data or data at the decoder output,
whereas sync bit errors are not, the optimum frame sync
acquisition algorithm should be based on a word distance
metric. Furthermore, from the arguments above, it is evi-
dent that this metric should flag those word errors e;
within a given error sequence e,, which are mixed pat-
terns of 0’s and 1’s, treating all mixed word error patterns
equally. Finally, under the assumption that ¢’ is negligible,
the word distance metric should eliminate from considera-
tion those indices m for which e,, contains both 0’s and I’s.
To this end, define the word distance ‘metric’ C (e,,) to
have the value K + 1 if e,, contains both 0’s and I’s, and
to be the number of mixed word error patterns in e,, other-
wise. (Actually C (e,) is not a true metric because it does
not satisfy the triangle inequality; however, it will still be
referred to as a metric in a looser sense below.) Based on
this metric, the following frame sync acquisition algo-
rithm can be applied to the decoded sequence r:

(1) For each index m in the range 0==m =N — 1, form
the error sequence e,,.

(2) Decide that pp is the received sync sequence if 7 is
the index m that minimizes C (ef).

(3) Decide that the decoder output is data if e, con-
tains 0s; otherwise, decide that the decoder output
is data.

()

Using a more rigorous mathematical derivation, it has
been verified that this frame sync acquisition algorithm is
optimum in the sense that it minimizes the probability of
false synchronization, based on the observable r, for a
given sync sequence s, And with respect to this algorithm,
there is no longer any advantage to selecting a frame sync
sequence with good autocorrelation properties relative to
the binary Hamming distance metric. Allowing for the
possibility of data or data at the decoder output, one can
argue that the optimum s is any sequence in which the
K 6-bit sync words s; have mutually orthogonal 32-symbol
code words.

Il. Analysis

It has been argued above that for biorthogonally coded
telemetry, a frame sync acquisition algorithm based on a
word distance metric achieves the lowest probability of
false synchronization. The next question of interest is how
much better this optimum algorithm performs than other
frame sync acquisition algorithms. As a partial measure
of the superiority of the word distance metric algorithm,
a union bound argument will now be used to compare
its performance with that of a frame sync acquisition
algorithm based on the Hamming distance metric. For
convenience, these two algorithms will frequently be iden-
tified below by the terms “word metric algorithm” and
“bit metric algorithm.”

First consider the performance of the word metric algo-
rithm using previously defined notation. Suppose p..* is
the actual received frame sync sequence: then the word
distance metric C (e,*) has the probability distribution

Pr[C(en) = y] = (I;) e (1 —en)*7;, 0=y=K
(4)

where ¢, is the word error rate. For those received seg-
ments p,, which do not overlap p,*, the word errors within
the error sequence e,, each have an equal probability of
being any of the 64 binary 6-tuples: the corresponding
metric C (e,,) has the probability distribution

K-p
SIONEREES

64

C(ew) = u] = "
ol =l =0 (R)" =k ®
pe; p=K+1
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The factor 2 in the first part of Eq. (5) is due to the possi-
bility of data or data at the decoder output. The prob-
ability p. that C (e,) will be K + 1, so that the index m
will be eliminated from consideration, can be shown to
equal 1 + (62/64)% — 2 (63/64)%; however, it does not
enter directly into the calculations below. The frame sync
acquisition algorithm computes C (e,) over the range
0=m=N — 1 seeking the index m for which C (en) is
minimized. The probability Py of false synchronization
is simply the probability that one or more of the C (en)s,
for m=£m*, is less than C (e,*). Using the familiar union
bounding technique,

1

rw = Pr[ Ve (em) <C (em*)jl

m=0
[T

= S PrlCen) < Clew)] ©

For the N — 2K + 1 nonoverlapping indices m defined
above, C (e,) and C (e,*) are statistically independent
random variables; then Eqs. (4) and (5) can be used to
show that

P,=Pr[C (en) < C(en*)]
() ) @)
)

For the 2K — 2 overlapping indices m (excluding m*), the
probability that C (e,,) is less than C (e.*) depends on the
choice of the frame sync sequence s. If the sync words con-
tained within s have mutually orthogonal code words, as
recommended earlier, a particular p,, that overlaps p,»
should be less likely to resemble s on a word distance basis
than a totally random, nonoverlapping p,,. Then

Pr[C (en) < C (em*)] = Py (8

for the overlapping indices. Combining Eqs. (6-8) yields
the result

Prw=(N — 1) P, 9)

The upper bound in Eq. (9) is tight when P, is small,
which occurs when ¢, is small.
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Next, consider the performance of the bit metric algo-
rithm. The Hamming weight of the binary 6K-tuple e,
denoted by H (e,), is defined as the number of 1’s in e,
Then the Hamming distance between s and a given p,, is
given by H (e.,). If the decoder output were known a priori
to be data, the bit metric algorithm would choose m to
minimize H (e,). Because there is an equal probability of
having data or data, a large value of H (e,) should be
regarded as favorably as a small value of H (e,). There-
fore, the frame sync acquisition algorithm should choose
m to maximize the normalized bit distance B (e,,), defined
according to

B(en)=|3K — H (en)| (10)

It is easier to calculate the distribution of B (e,,) indi-
rectly, by first finding the distribution of H (e,), and then
using the formula

Pr{H(e,) =3K]; p=0
Pr[B(en) = p] = {Pr[H (en) = 3K — 4]
+ Pr[H (en) =3K +p]; 1=p=3K

(11)
Regarding the data/data ambiguity, it is evident that

Pr[H (en) = y|data] = Pr[H (e,) = 6K — y| data]
(12)

From Egs. (11) and (12), one can show that the distribu-
tion of B (e,) conditioned on the presence of data is iden-
tical to that conditioned on data, so that

Pr [B(es) = u] =Pr[B(en) = p|data] (13)

That is, the distribution of H (e,) for the case of data is
sufficient to determine the distribution of B (e,,) averaged
over the occurrence of data and data.

It is generally assumed that the transmitted data (ex-
cluding the sync words) can be regarded as a stream of
statistically independent, equally likely 1’s and 0’s. Con-
sequently, the p,’s which do not overlap p,+ consist of a
sequence of K independent, equally likely bits; therefore,
for these indices,

— — 6K L K. P
Pr[H(em)—n|data]—(n><64>, 0=, <6K

(14)
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Applying Egs. (11) and (13), it is clear that for these

indices,
6K (1\F
<3K> (64 - BT
Pr[B(em) = u] =

' 6K N o
(5 )Y v

(15)

The distribution of H (e,+) is more difficult to derive;
it is computed in the Appendix to have the form

Pr [H (e,) = 7 | data]
= S (M)t () @ - s 0=n =k
(19)

where the factor Ay y/(62)7 is the probability of having a
total of 5 bit errors within a sequence of y incorrectly de-

K

coded 6-bit words. Under the assumption that ¢’ is neg-
hglble in Eq. (1), Ay, is nonzero only in the range
y =15 =5y, and this explains the range in Eq. (16). It is
shown in the appendix that A, , satisfies the following
recursive formula:

6
A'q,o = 0 ] h A’7y1 = K
; elsewhere 0; elsewhere
for y=2
min{n-1,5Y-5)
2 Ap,ydA"l-H:l; yénéSy
Ay y = {Pemax@=57-D

0; elsewhere
(7

Combining Egs. (11), (13), and (16), the distribution of
B (en) is found to have the form

S (e - -

y=1

Pr[B(ew) =¢] =

K

y=0

The probability Prs of false sync acquisition for the
bit metric algorithm can now be upperbounded using
Egs. (15) and (18). Making the same assumptions con-
cerning the overlapping and nonoverlapping indices m as
in the case of the word metric algorithm, with the proviso
that the sync word is a Barker or PN sequence now, it can
be shown that

Prs<(N —1)P; (19)

where Py is the probability that B (ex) exceeds B (en*) for

(18)
Z <I;> (Asx-t,y T Asxig,) <;_;>Y (1 — ew)*
1=¢=3K
Pz = Pr[B(en) > B(en*)]
= (62)"; ()(@) @ [Ay,,z ()
ST () S 2, ()
(20)

a nonoverlapping index m:
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Assuming the bounds in Eqgs. (9) and (19) are tight, the
superiority of the word metric algorithm over the bit met-

and for K=2,

ric algorithm is demonstrated by showing that Pg/Pw > 1 P, = 4 .+ 246 o2
for any given K and &, For example, Egs. (7), (17), V(642 (B4
and (20) can be used to show that for K=1,
p 44120 3,281,316
27 (62) (64 T (62)° (64
oL
Tt . Ps _ 27735440 + 3,281 316 ew
. PW - 15,376 ‘Jf‘ 945,624 Ew
p 331 2787; e, =0.1
B = T2y [aoy £w
(31)(32) ={ 11148; e, =001 (22)
\U/ 177.90; &, —0
. Py 331
"Pw 31 10.68, for all e, (21) For small ¢, the following approximations are useful:
2K
ng 64)K Ew (23)
331
Gey - K
Py (24)
2K
— 4 . >
63) (647" (324K* + 432K® + 459K? + 246K + 62) ep; K=2
3—31-; K=1
lim PB 31
Ew > 0 P_ = (25)
w 324K+ + 432K® + 459K* + 246K + 62

K=2

The limit of Ps/Py as &, approaches zero is tabulated
below for 1=K =5. The results indicate that the word
metric algorithm greatly outperforms the bit metric algo-
rithm for small word error rates.

lim
K sweollj—;

1.068 X 10*
1.779 X 10?
6.910 X 10?
1.919 X 102
4.343 X 10°

U o W N =
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V. Conclusion

The problem of acquiring frame synchronization for
biorthogonally coded telemetry was investigated. To mini-
mize the probability of false synchronization, the optimum
frame sync acquisition algorithm, which must operate on
the decoded data, uses a word distance metric rather than
the Hamming distance metric to locate the received frame
sync sequence.

The optimum word metric algorithm was developed
heuristically for the particular case in which each frame
contains N complete words, including a frame sync prefix
of K words. With respect to this algorithm, the optimum
frame sync sequence is one in which the K sync words
have mutually orthogonal code words.
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The Mariner and Viking projects use telemetry modes
employing a (32,6) biorthogonal code. For this specific
case, the performance of the optimum word metric algo-
rithm was compared analytically with the optimum frame
sync acquisition algorithm based on the Hamming distance
metric. It was demonstrated that the word metric algo-
rithm is superior, particularly for large K and small word
error rates.

For biorthogonally coded telemetry modes with non-
integer values of N and K, as in the 1973 Mariner Venus
Mercury mission, the optimum frame sync acquisition
algorithm is generally more complicated than the word
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metric algorithm considered in this report. Consequently,
implementation considerations may dictate the use of a
suboptimum algorithm based on the Hamming distance
metric in this case.

It is recommended that future flight projects use integer
values of N and K on biorthogonally coded telemetry
modes so that optimum frame sync procedures can be
easily employed. Furthermore, it should be stressed that
improved performance is obtained when frame sync deci-
sions are based jointly on several frames of decoded data,
the number of frames being limited by the available stor-
age capacity.
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Appendix
Bit Error Distribution for (32,6) Biorthogonally Coded Telemetry

Suppose a sequence of K 6-bit words s = (s, 52, * * *, Sx)
is transmitted over a communication link employing a
(32,6) biorthogonal code. Because of additive channel
noise, the resulting decoded sequence of K 6-bit words
r = (r,T., -+, 1) does not in general equal the trans-
mitted sequence s. A binary error sequence

e={(e,e€, " ,€f)

can be formed, where e; is the modulo 2 sum of s; and r;:
1’s in the error sequence e correspond to bit errors in the
decoded sequencer.

It is assumed that the error words e; are statistically
independent random sequences with probability distribu-
tions

1-— Eyw; €5 — 0
Prie;] = ¢ ¢/62; €;5£0,1 (A-1)
0; e; — 1

K

P,[H = q] =2(5>An,7<

y=0

Since each word error contains from 1 to 5 bit errors ac-
cording to Eq. (A-1), Ay is nonzero only in the range
y == 1 == By: this explains the range in Eq. (A-2). The Ay 4s
must now be determined to complete the expression for
Pr[H = y].

If no word errors are made, there are no bit errors;
therefore

1; 77=0

Ay =
0; n=£0

(A-3)

The error word e; for an incorrectly decoded word r; is
equally likely to be any binary 6-tuple with the exception
of 0 and 1. Therefore, the probability of having » bit errors
in a given incorrectly decoded word is simply the number
of binary 6-tuples of Hamming weight 7, divided by 62.
Consequently
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where &, is the word error rate for the communication link,
0 is the 6-tuple containing all 0’s, and 1 is similarly defined.
Note that Eq. (A-1) rules out the possibility that r; can be
the complement of s;, corresponding to 6 bit errors in a
given word. Also, if a word error is made, the decoded
word is equally likely to be any binary 6-tuple containing
from 1 to 5 bit errors, excluding the transmitted word and
its complement.

Suppose y of the words in r are incorrectly decoded:
the probability of this event is

(f) el (1 — g)¥7; 0=y=K
The K — vy correctly decoded words contain no bit errors:
all of the bit errors in r lie in the subset of K incorrectly
decoded words. Let H denote the Hamming weight of e,
which is equivalent to the number of bit errors in r. Define
Ay +/(62)7 to be the probability of having a total of 7 bit
errors in a group of v incorrectly decoded words: then the
probability distribution of H has the form

y
) (1 — o) 0=7y=5K (A-2)

(6>; 1=y=5
Agy=1{ N

0; elsewhere

(A-4)

For y =<2, the probability of 4 bit errors within y incor-
rectly decoded words is equal to the probability of u bit
errors in y — 1 incorrect words, multiplied by the proba-
bility of 5 — u bit errors within a single incorrect word,
summed over the appropriate range of p.:

min (n-1,5Y-5) -
Apva Ay y=n=5y
_ p=max(n-5,7-1)
A't],'y -
(ry=2)

(A-5)

0; elsewhere
The range of p in Eq. (A-5) follows from the ranges over

which A, y-, and Ay . are nonzero. Thus A,y can be
found recursively for y=2.
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